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A spherical tensor expansion of 1/r12 (where r12 is the separation considered) 
is used to represent Coulomb integrals in a molecular context for an M N D O  
method over an spd basis of  STO. This is rendered invariant of  the space 
fixed axes chosen using Wigner rotation matrices which transform the integrals 
from the molecular frame (as distinct from Dewar [1]). This procedure is 
found to be rigorous only in the long range limit but is satisfactory at 
separations of  the order of  most single bond lengths (as Dewar [1]). The pole 
at Rab -- 0 is avoided by adding a constant to the separation, which takes the 
value that reproduces the Slater-Condon monocentric integrals there. 
Extension over the whole range is carried out using a unique multiplicative 
polynomial  from the Legendre function expansion of 1/(R2ab-F A 2) for small 
Rab and an exponential decay in R~b is dictated by symmetry in the overlap 
region expression, which retains rotational invariance. 

This calculation results in an easy evaluation of these functions and their first 
derivatives leading to a very rapid molecular geometry optimisation taking 
the d-orbitals into account in an M N D O  hypothesis. 
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I. Introduction 

Quantum chemical calculations rely on evaluating several kinds of  integral 
computed over the basis of  atomic orbitals xi. Coulomb integrals, which are of  
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the general form: 

( ijlkl) = (x,(1)xj(1)ll/ rl21xk( 2)x,(2)) 

in which r12 is the interelectronic separation, are the most difficult to evaluate. 
In semi-empirical methods they are determined by means of various approximate 
formulae. 

In the MNDO metohd (in which only bicentric terms are considered) Dewar [1] 
used a point charge model over an sp basis. This model is not well adapted to 
the case of  a basis containing d-orbitals, (or fully generalised bases). 

In this work, we re-examine the evaluation of  these integrals, using a notation 
due to Steinborn [7] for the integrals considered by Roothaan [2], the decomposi- 
tion of  the integrals into fundamental multipolar terms, tabulated by Dyatkina 
[3] and the multipolar expansion of  1/rl2 in terms of  spherical tensors [4]. This 
procedure assures the rotational invariance and generality of basis. 

At short interatomic distances Rab, this multipole expansion ceases to be a good 
approximation. It is generalised in [5] and the integral should converge to an 
atomic Slater-Condon term when this distance tends to zero. This difficulty is 
overcome by using an additive constant A bringing into play the expansion of 
1/(R~b+A2). The value of  A must give the correct monocentric term and the 
expansion of  the total gives an associated Legendre polynomial, which is multi- 
plicative and provides the interpolation of  the integral at any separation (see [6]). 

Therefore, the method which we propose appears to be more general than 
Dewar 's .  In addition, it permits an easy analytical derivation of the integral with 
respect to interatomic distance and the direction cosines of  the bond under 
consideration. This property makes our method very efficient for useful geometry 
optimisations. 

2. Theoretical analysis 

2.1. The long range limit 

in the case of large separations we have from [4]: 

1 l< f ( l l ,  12, m) 
- - =  ~' E E ]~/lq-/2q-1 S ~ I ( ~ R d ) S ~ 2 * ( ~ R b ) '  
r12 l I 12 m = - l <  .s~.ab 

where 1 < is the minimum of 11 and 12 and 

( -1 )  12+lml(l, +/2)! 

f ( l , ,  12, m) [( l l_m)t( l l+m)!(12_m)!(12+m)!] l /v  (1.1) 

The S?(r represent spherical tensors [7] with appropriate arguments in the 
vectorial rotation matrix 6 acting on R. An arbitrary rotation of axes can thus 
be considered. 

Normalised spherical tensors are rotated from body-fixed axes to space fixed 
axes using the Wigner rotation marices (matrices of  the rotation group). The 
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argument thus appearing in the above formula hence refers to rotation of the 
vectors Ra, Rb tO the space fixed axes. This can be directly expressed in terms 
of the spherical tensor with the unrotated vectors as arguments due to the spherical 
symmetry of the functions (see [6]). 

11 
s?,(eno)= E ,1 m, Dmm'(f~a)S11 (Ra). 

m'=--I 1 

Here the real D are used with the usual convention for negative m; and the 
spherical tensors with position vector Ra as argument. This takes a simple form 
in terms of normalised spherical harmonics with Condon-Short ly phases. 

$1,((9 a) = R~ 2 D~m'(~a)Shm'(Ol,t~l) . (1.2) 
mr=--ll 

The Coulomb integrals occuring in the MNDO approximation [1] of Roothaan's 
equations are represented by (iojalkblb) where ix(jxkflx) stands for a Slater type 
orbital centred on atom x, with quantum numbers NxLxMx. According to 
Roothaan [2] the total Coulomb integral is then obtained using the coefficients 
of [3]: 

(iaja[kblb)-~ WaWb ~ E aL~M~ aLbMb[N,~L,~MaINbLbMb]~Mo.Mb. (1.3) 
LaM a LbMb 

The W represent atomic multipole moments defined in accordance with [3]. 

(2~) )n i+x /2(2~(KJ_ .___~) )n i+l /2  

W= [(2ni)!(2ns)]u 2 and N = n i + n ~ - l .  

the coefficients aLoMo give the contributions of individual integrals and 
[N.L~MolNbLbMb] is an individual integral expressed in terms of STO and 1/r12: 

[2La +1"~1/2 L N+2 N--1 
from [N~LoM,, l= ~ )  2 aK~o Ra o exp(--KoR,,)SLoMo(O, ~). 

(1.4) 

The standard expression for an STO with K~ =ff( i~)+ff( j , )  in the long range 
limit x (Na + L~ + 1) ! Using (1.1) and (1.2) [ N~L~M~INbLbM b ] is approximated by: 

~< f(l~,12, m) 
r o, Mo,  ,M =22 2 ] 11q-12q- 1 Iflb. (1.5) 

11 12 m=-- l<  l~ab  

The individual integrals can be carried out where I~ and Ib have similar 
expressions leading to: 

L< f(La, Lb, m) 2L"+Lb L L 
FLa.M~,L~,M~ = E ,'.L +L~+, ,~ Lo,~- LO O,,,~o(f~)DT~(f~b). (1.6) 

m = - - L <  l~ag 1~ a 1~ b 

2.2. Treatment of the pole at gab = 0 and polynomial of interpolation 

The expression (1.6) is not universally applicable outside the long range zone 
and must be generalised. 
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The values of monocentric electronic integrals are well known and are given by 
the Slater-Condon integrals [8]. In order to assure a correct behaviour of  
Coulomb integrals these values must be reproduced in the short range limit. A 
method of  additive constants was first introduced by Dewar [1] in which these 
constants are calculated either analytically or n~medcally from the monocentric 
terms. Our procedure gives the monocentric integrals directly at Ra; = 0. 

We first define the atomic multipoles as tthey are used in the algorithm: 

[ 2 \ L o  
too= (2.1) 

Now 

(ij.lkblb) 

m)Ma~ 1< f(La, Lb, L L~ 
= Y ~  Z Y 2 2 

L, Mo LbMb ,-=--'< (R~b+A~b)(L~+Lb+I)/2 

x aL.~aL.M.D~,(I~)DibMb(Ob). (2.2) 

A,b is determined from the individual integrals of [3] at Rab = 0 where the atoms 
are no longer distinct (we adopt the label L,) .  

To complete the interpolation, a multiplicative polynomial is necessary for full 
generalisation, where we are guided by the analytical integrals as an upper bound 
and rotation invariance of  the result. These conditions are obviously satisfied by 
the expansion using associated Legendre functions about R = 0 of  1/(RZ+A z) 
at small values of A and R. These are standard methods from resolution by 
spherical functions of  differential equations [6]. The polynomials which assure 
the coincidence between the individual integrals calculated here and those of  
Dewar calculated in a point charge scheme in the limit of zero charge separation 
for the sp basis appear to be of the form 

m 2"mt( l -2rn)!{U~ pm {R~ 
E'~(R,A)-  l! \ A ]  ' - " \U]"  (2.3) 

In this expression l = Lo + Lb, m is the minimum value of  I corresponding to the 
individual integral concerned, the variable R is short for R,b, A being the 
equivalent for A,,b, U = (R2+ A2) 1/2, Pt"_,,,(X) is an associated Legendre function 
of  X. 

We have omitted subscripts to simplify the expression which is dependent on 
the pair of atoms and the quantum numbers labeling the individual integral under 
consideration. 

The polynomials (2.~3) are generated by 

fll-2m { l ~ 
E'f"(R, A) - (-1)~-2m(2m)!l! U'+I d~z~\-~-i-7~]" (2.4) 
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The numerators are themselves polynomials in R, (the denominator being U ~-2") 
satisfying the simple recurrence relation: 

dEl~+,(R, A) 
- (1+ 1)ET'(R, A). (2.5) 

dR 

In the R = 0 limit these polynomials must reduce to a constant term giving the 
appropriate Slater-Condon parameter. This condition is satisfied as follows: 

Comparison of (2.2), (2.3), and (1.6), in this limit leads to: 

[NaLaMalNbLbMb ] f(La, La, Ma)(ML~)2ET'(Q, A) (2.6) 
(2La + 1) 

Here we identify the left-hand side of (2.6) with a single Slater-Condon parameter 
FG(O). 

Aab is expressed on decomposing as follows: 

A~b = p( Lo, iojo) + p(Lb, ibjb) (2.7) 

with the p being the portions of monocentric integrals ascribed to each atom 
which take the following form: 

1 [(M~,)2f(La, La, Ma)E2ML~(O, (,/(2L +,)) 
p(La, i~jo) =~ L 2LaFG(i~ja) A)]  (2.8) 

The simple form of  the p results from the formulation of  the M. The FG represent 
the basic integrals composing the monocentric terms, where the index /j serves 
to select the value corresponding to a basic coulomb (F)  or exchange (G)  integral. 
We thus have, for the differnt values of La the following scheme: 

(1) L~ = 0 corresponds to F~ 

We have F~ F~ F~ F~ F~ and F~ These terms are 
known exactly and follow the symmetry of the M~~ According to (2.7) and (2.8): 

F~ + F~ FO(sd) = F~ + F~ 
2 ' 2 ' 

F ~  sp ) - 

and 

F~ = 
F~ + F~ dd) 

2 

(2) La = 1 corresponds to GI(/j): 

We use Gl(sp) and Gl(pd) directly, no other integrals being non-zero in this case. 

(3) L~ = 2  corresponds to F2(~) or G2(U) with F2(pp), F2(pd) and F2(dd). 

F2(pd)- F2(pp)+ F2(dd). G2(ij) is uniquely G2(sd). 
2 
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(4) Lo = 3 leads t o  G3(pd)  

(5) L~ = 4 leads t o  F4(dd) 

Another condition must be satisfied at Rob = 0, namely the symmetry requirement 
for individual integrals which is a necessary condition to assure that the latter 
transform correctly under rotations: 

[N,~LaM,,INbLbM,~](Ro~=o) = (--1)~6Lo,Lb6Mo, Mb[NaL~ (2.9) 

(see Roothaan [2]). Condition (22.9) imposes a term e(Rab), dictated by the 
6LoLl. Its form being in accord with the bipolar expansion in the close or overlap 
region (5) and agreeing, when expanded with the leading terms of  Roothaan's 
analytical integrals [2]. We get: 

[ N,,L,,M,~INbLbMb ] = F Lo,Mo, L~,M~ e( R~b ) 

where, for L,, = Lb, e(R,b) = 1 (2.10) 

and e(R,,b)= (1 - e x p ( - ( K ,  + Kb)R,b)) otherwise. 

The equality of magnitude of  individual integrals sharing the same L value at 
R,b = 0 is also a necessary condition for correct rotational transformation. This 
condition is now fulfilled by the appropriate definition of the polynomials used 
to interpolate the value of  the integrals between the exact limits. 

We are now in a position to write the expression for the complete integral, valid 
over the whole range of  R~b: 

From (2.2) and using (2.10) and (2.4), we obtain: 

~.f(La,  Lb, m) ~ L  ~,~Lb 
AVI tl a l l ' l  b (ioL[kflb) = Z L L -~ ju  aL.~.aLbMb 

L a M  a L b M b  m a g  

D L DLb m X , , ~ o ( ~ )  mM,(~b)Eta+L~(Rab, A~b)e(R,,b) (2.11) 

This form of  the integrals possesses all the required transformation properties, 
is continuous and well-behaved and is relatively simple. We may thus suppose 
that the first derivatives with respect to Rab and the corresponding direction 
cosines exist at all values of the function and they will be evaluated in Sect. 2.3. 

2.3. Evaluation o f  the derivatives used in the optimisation 

Evidently, from (2.11), the only terms of  (i~ja[kblb) depending on R,b are U, E 
and e(Rab) thus the first derivative with respect to Rab is the partial derivative 
concerned, regarding the rest of the expression as constant. 

dU~(bt~+L~ +1) 
( La + Lb + 1) RabU~(b L~ +3) (3.1) 

dRab 

[ U,~b'~ r . ~ m  [' Rab'~ , AEb m [ Rab\ "] 

m 

dR~b U2b ' 
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where: 

2mmt(L, + Lb - m)l E,Lm+Lb(Rab, Aab) (3.2) EL%+Lb(Rab' Aab) -- (La q- Lb)! " 

from (2.4). 
When La = Lb, the derivative of e(Rab) is 0, otherwise we have: 

de ( Rab ) 
- -  = -(Ka + Kb) exp( - (Ka  + Kb)R~b) (3.3) 

dRab 

for completeness. 

Thus the complete Rab derivative takes the form: 

{ dE de (L~ + Lb + 1)Rab ~ "~ 
d(iaja[kblb)dRab --  LaMaZ L~bMb ~m vab \ ~ e+ E dRa~b -U~--~b z~e}, (3.4) 

where 

L L b L L Vab =f(L~, Lb, m)M~~ aLaMo aL~M~D,.%(aa)DT~%(ab) 

the term independent of Rab. 

We next observe that only the Wigner rotation matrices depend on the direction 
cosines facilitating this part of the calculation because we already have an 
algorithm which calculates the relevant derivatives [10]. 

The gradient is then readily calculated by adding the derivatives with respect to 
the direction cosine to that with respect to Rab. This gradient is summed over all 
atom pairs in the molecule and treated according to the method given by [8]. 

3. Results 

Figure 1 compares certain integrals calculated by the MNDO type method 
(presented here) with the corresponding analytical curves from the expressions 
given in [2] and the values obtained in [1], for the C2 pair over the railge R =0  
to R = 5 A. The ratio of  cpu times for the calculation of  these integrals in the 
present method and in [1] is 0.48. 

For a C12 pair the 2025 integrals in an spd basis are consistent with analytical 
values (2) and are calculated in an arbitrary frame of reference with a cpu ratio 
of 1.41 compared with the 100 integrals of an sp basis in MNDO. 

The molecules F2, CH4, CF4, NH3, H20, C12 and CCI 4 were optimised w i t h  
regard to molecular geometry in the present hypothesis and in the MNDO 
hypothesis (11) with respect to cartesian coordinates  in both cases using, for 
the former, an original optimisation algorithm [12] and, for the latter, the method 
described here. MNDO parameters [13] were used in both cases for molecules 
treated over an sp basis but it was found necessary to adopt the NDDO parameters 
and Burns exponents for molecules treated over an spd basis. The parameters 
will serve as the starting point for a least squares fitting procedure for a new 
MNDO parametrisation. 
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Fig. la-f. Coulomb integrals for a c-c atom pair. Comparison of values calculated from [1] (a), [4] 
(b) and the present work (c). Energy vs separation plots in Angstroms and u~a., respectively. 
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4. Conclusion 

We have p re sen ted  a ro ta t iona l ly  invar ian t  m e t h o d  which  permi ts  us t o  compute  
b icent r ic  cou lomb  integrals  over  a basis  which  is not  res t r ic ted  to s and  p orbi ta ls ,  
as was p rev ious ly  the  case. I t  therefore  extends  the  field of  a p p l i c a t i o n  o f  M N D O  
type  ca lcu la t ions  to the  second  pe r iod  of  the  pe r iod i c  t ab le  and  be yond .  
Der iva t ives  o f  the  in tegrals  with respect  to Rab and  to the  d i rec t ion  cosines  o f  
the  vec tor  l inking  the p a i r  o f  a toms unde r  cons ide ra t ion  are read i ly  evaluated .  
This permi t s  the  i nco rpo ra t i on  o f  the  a lgor i thm into the  op t imisa t ion  o f  mo lecu la r  
geomet ry  due  to R ina ld i  [8]. The  resul t  is tha t  op t imi sa t ion  can now be  carr ied  
out  very r ap id ly  in an M N D O  a p p r o x i m a t i o n  ic lud ing  d-orb i ta l s .  Molecu les  
inc lud ing  heavy  a toms  are  therefore  i nc luded  in the  series o f  poss ibi l i t ies .  

The  p resen t  op t imi sa t ion  will  be  avai lab le  as an op t ion  o f  G E O M O S  Q.C.P.E 
(to be  pub l i shed) .  
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